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Abstract. As in a previous paper we cbnsider j-mers Ai reacting irreversibly according to 
the scheme 

Aj+Ak ----* Aj+k. 
Rtk 

The kinetic equations for the concentration of Ai are examined, and particularly their 
behaviour near gelation. Only the case 

R. I* = j"k" ( O C a < l )  

is considered; this is a variation of the usual Flory-Stockmayer model to take excluded 
volume and cyclisation effects roughly into account. The effect on certain critical exponents 
is estimated. 

1. Introduction 

In a previous paper (Leyvraz and Tschudi 1981, hereinafter referred to as I) we 
discussed the mathematical theory of the following model for polymerisation, and in 
particular gelation: consider the substances Ai ( j  = 1,2,  . . .) to be j-mers and take 
them to react in the manner 

where Rjk is the reaction rate and satisfies Rjk = Rkj 3 0 .  Dissociation of the polymers 
into smaller constituents is therefore disregarded. The system of kinetic equations for 
the concentration cj of Aj is given in this model by 

Particular cases of this system have been discussed in the literature: the case Rjk = R 
was solved exactly by von Smoluchowsky (1916); the case Rik = (Ai + B ) ( A k  + B )  
was first discussed by Stockmayer (1943), who does not, however, give an explicit 
time-dependent solution. Such a solution was given by McLeod (1962) in the case 
Rjk = jk for times less than 1. He further showed that, if 

00 1 j 2 C j ( t ) < o o  
j = l  

is assumed, the solution cannot be continued beyond t = 1. 

0305-4470/82/061951+ 14$02.00 @ 1982 The Institute of Physics 1951 



1952 F Leyvraz and H R Tschudi 

Dropping this requirement we were able to show (I) that a reasonable solution 
does exist for all times. This is given by 

The quantity Xpl j c ( t )  becomes time-dependent after t = 1. The significance of this 
phenomenon and its association with the formation of infinite clusters was discussed 
in I. We further showed the existence of such global solutions wherever a sequence 
of numbers rj could be found, such that 

(i) Rik s rjrk 
i+m ] 

A more complete review of the literature concerning these systems can be found 
in Tompa (1976), Peebles (1971) and Drake (1972). Interesting experiments on the 
cluster size distribution for high-functionality antigens cross-linked by antibodies have 
been performed by Cohen et a1 (1980, see also references therein). These are very 
related systems. The asymptotic cluster size distribution is well-known in the case 

Rik = (Aj + B)(Ak  + B )  A>O B > - A  

and has also been investigated for the closely related percolation models (see e.g. 
Stauffer 1979). The former describes polymers having a number of reactive sites 
proportional to their size. This would be valid if polyfunctional units were to grow 
without cycles, each site being equally reactive, independently of where it is situated. 
This is not the case because of excluded volume and cyclisation effects. We will 
therefore assume that the number of reactive sites grows as some unspecified power 
of the size. The aim of this paper is to analyse the critical behaviour near gelation 
for the case 

Rjk = j"k" (Osa  cl), 

It is our hope that some kind of 'universality' holds so that reaction constants behaving 
asymptotically as (jk)" will show the same critical behaviour. In contradistinction to 
our previous results we shall not attempt to prove much in this paper, and all our 
reasonings will be of a rather tentative nature. 

Let us now define 

pi = jpci (1) 
giving rise to the equations 

k = l  k = l  

We now formulate conjectures and a theorem. 

Conjecture 1 .  If gelation occurs, then for a fixed time t after gelation we have for 
large j 

for some A, T. 1 p j ( t )  - j-T+" = j - A  
c j ( t )  - j-' 
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The symbol - will be used loosely in the following to indicate the nature of some 
asymptotic behaviour. In this case we might define it as 

Under these circumstances we can show that A = $, 7 = a +$. Moreover, if 

exists, then we can show that 

The hypothesis (3) can be verified explicitly in the case a = 1. It is unclear, however, 
whether an extension to the general case is possible. 

Conjecture 2. If a >; and gelation takes place at a finite time tg, then for c near tg 
but below it we have 

p j ( t ) -  j-3'2 exp(-G(jF(t))). 

The inverse 'coherence length' F ( t )  behaves as 

F ( t )  - (tg- t )"  

v = 2/(2a - 1) 

with 

and therefore, for p -a > 4, 

where 

6, = [ 2 ( p  -a) - 1]/(2a - 1). 

We further conjecture that 

G(x)  - x P  

for x <c 1. The asymptotic form of G(x) for large x is still not quite clear 

Conjecture 3. For a > 4 the system (2) has solutions of the type 

pj(t) - a,/t 

where 
m 

j = l  
aj 3 0 j1-"a j<a .  

These solutions are of the same type as the exact gel solution in the case a = 1. 
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Conjecture 4.  Gelation occurs for a >;. In this context we also prove the following: 

Theorem: Let Rjk s R (jk)" where a < 1. Then gelation does not occur. 

We now proceed to justify those conjectures by some remarks. 

2. Remarks on the first conjecture 

We start from the following simple consequence from equations (2): 
d N  N 

- j c j = -  jpj 2 Pk. dt j = l  j=l k = N - j + l  

From a solution after gelation we require 
m m 

j =  1 j = 1  
C jcj = j l -"p j  <CO (9 

d m  
(ii) - j c j ( t ) < O  

dtj=i  

if the derivative exists, which is our basic assumption. 
From (ii) and ( 5 )  we immediately get 

m 1 j p j  =a. 
j = l  

So from (i) and (6) we obtain 
pi - j - ^  

where 2-a S A  s 2 .  
Using ( 5 )  and (7) we get 

N - C jl-" k-" 
j = l  k = N - j + l  

- ~ 3 - 2 "  

since the integral converges. However, assuming (ii), we obtain 3 - 2A = 0 or A = 2, 
which is what we wanted to show. If q ( t )  as defined by (3) exists, and if &pl j c j ( t )  
has a derivative, then proving equation (4) is just the tedious calcuIation shown in 
appendix 1. 

Note that, if this result is correct, it precludes the possibility of gelation for a <$, 
since then A = $ C 2 - a .  
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3. Remarks on the second conjecture 

As before, we assume that the system gels at time tg. For t > tg we can write the solution 
of the system in the form 

pj(t) =j-3/2qi(t) qj(t1-1. 

To get the behaviour before tg we further assume: ( a )  that the functions qj(t) can be 
continued for some time below tg and that the functions j-3/2qi(t) are still solutions 
of equations (2); (b) that the real solutions of (2) differ from j-3’2qi(t) by a somehow 
strongly decreasing factor which depends on j only in the units of a time-dependent 
‘coherence length’ t ( t )  which diverges at tg. More formally 

pj(t) =j-3/2qj(t) exp(-G(i/t(t))) 

e( t) - ( tg - t)-”. 

The symbol = indicates that we consider the asymptotic behaviour in the limit 

t+tg, j + a  j / ( ( t )  =constant. 

F( t )  = l / t ( t )  F(t,) = 0 G(0) = 0 
If we define 

and put the ansatz (8) in equations (2), we obtain, after some manipulations, 

-3/2 

x (1 - $) 
-F f qk(kF)-3/2[eXp(-G(k~))- 111. 

{exp[G(jF) - G(kF) - G(( j  - k)F)] - 1) 

k = l  

If we eliminate all the qk since they are of the order of magnitude 1, then perform 
the limit (lo), we obtain 

It follows that Fu-3/2F only depends on y = jF’. Since, however, it does not depend 
on j ,  it clearly must be a constant, i.e. 

(12) 
fi - ~ 3 / 2 - a  

leading to 
F ( t )  - (tg- t)” v = 2/(2cy - 1). 

We now want to know how the moments 

j - 1  
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diverge when t near tg and p is large enough. We have 

Mp(t) -- f jp-a-312 exp(-G(jF)) 
j = l  

dx xP-U-3/2 - G ( X )  e - FU+llZ-p P - ( t g -  t ) -Y(P-P-112)  

This means 

Mp(t) - (tg- t)-*. 8, = [2 (p  - a )  - 1]/(2a - 1) (13) 

if p -a > i, otherwise the sum converges. (It can diverge logarithmically if p -cy = i.) 
To determine the function G(y) we combine (11) and (12) to give 

03 

G'(y)-y"'[ I d x ~ - ~ ' ~ [ l - e x p ( - G ( x ) ) ]  
0 

The integrals in (14) converge if 

for some E > 0. We can therefore neglect the second integral on the right-hand side 
of (13) if y << 1. This gives 

G(Y)-Y" (Y cc 1). 

Again, a =; is a critical value. The discussion of G(x)  for large x is tricky and we 
will not go into details. 

It is fairly easy, however, to get an idea of how the pj(t) behave for large j at fixed 
t < tg. Indeed, following McLeod (1962) we note that 

.i-2 
1- fJ-l  p j ( t ) s 7 r j ( t ) = -  ( j - l ) !  

since these are solutions of the system 

and therefore for all times 

For t < l / e  it is easy to see that the Tj(t) fall off exponentially in j ,  and therefore so 
do the pj(t). There is, however, no reason to imagine a singularity that would change 
this state of affairs without causing gelation. We therefore assume that this exponential 
decay persists up to tg. This is not incompatible with (14) since we are considering 
large j at a fixed time and therefore not the limit (10). 
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4. Remarks on the third conjecture 

We now consider the following ansatz for a gel solution of the system (2): 

P j ( f ) = a j l ( t + P ) .  (16) 

This ansatz has the remarkable property that it satisfies the system (2) automatically 
if the aj  satisfy the relations 

f a j = l  
j = l  

The quantities aj  are therefore independent of any specific initial conditions. Indeed 
we have 

oc 1 "  C j c j ( tg)  =- j l-"aj 
1=1 t,+p i = l  

or 

The whole solution therefore depends only on the gelation time tg and the total mass 
contained in the system. 

We are looking for solutions such that 
00 

aj  3 0 C j1-"aj <CO. 
j = 1  

By a power-counting argument similar to the one used in 8 2, we show and 
is therefore only possible for (Y > i. To make the existence of such solutions plausible 
in this case we proceed as follows: define 

P i ( b )  = 1 (18a) 
1 i - 1  

The quantities P j ( b ) / b  satisfy (176)  for any value of b and ( 1 7 a )  if 
W 

Define further 
N 

B N ( ~ ) =  1 Pj(b)* 
j = l  

Since we have 

&(b)  = b'-'&(l) 

B N ( b )  is a continuous, monotonically decreasing function of b with a pole at b = 0. 
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Therefore the equation 

BN(b) = b 

has exactly one solution: pN > 0. 
In appendix 2 it is shown that for b sufficiently large we have 

lim B N ( b ) < a .  
N-m 

Furthermore for all b 

and therefore 

F N  p N + l *  

From (19) we obtain that the sequence p N  is bounded. It must therefore converge 
to some limit, say p. We have 

p = lim p N  
N-m 

N 

If we now assume that for all N 

for some K, then the second term is zero and the sequence 

satisfies relations (17) as well as the other requirements. 
Unfortunately there seems to be no easy way to decide whether (20) holds or not. 

Table 1 shows numerical results for finite but large N. There is an obvious difference 
between CY >$ and CY <i. The slow convergence is due to the fact that solutions of 
(17) have at most a rather slow algebraic decay in j .  

From these numerical results we conclude that it is probable that for a! >$ there 
exist solutions of the type (16) for which of course the total mass Z,"=,jci(t) is no 
longer constant in time. It remains, however, an open question as to whether or not 
such a solution can be reached in a finite time from an initial condition such as pi(0) = Si,. 
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Table 1. 

1 .oo 50 2.668 601 594 62 2.6686 
100 2.693 833 605 05 2.6938 
200 2.706 218 574 58 2.7062 

0.75 50 3.039 689 660 83 4.4736 
100 3.072 070 299 37 4.7312 
200 3.087 806 873 97 4.9416 
400 3.095 465 745 57 5.1165 

0.50 50 3.815 439 553 74 10.6174 
100 3.866 968 850 55 12.6017 
200 3.892 068 144 23 14.7030 

0.25 50 6.212 010 262 90 47.7926 
100 6.342 163 925 55 70.8638 
200 6.407 089 471 30 103.6175 

5. Remarks of the fourth conjecture 

The above remarks already indicate strongly that (Y =: is indeed the limit between 
'normal' polymerisation and gelation. We now add another independent consider- 
ation, which also singles out (Y =$. Moreover, it also gives some insight into the 
mechanism leading to gelation for a > 4. 

Consider the systems 

c;" )  = (1/n)6;,, 

for n = 1, 2 ,  3, . . . . They all satisfy 
m 1 j C y ( 0 )  = 1 

j = 1  

and differ only by the initial condition. Clearly 

c y ( ? )  = 0 

if j is not a multiple of n. We therefore define 

2;"' = nc;"'. 

These satisfy the equations 
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It follows that 

c$, '( t)  = ( I /n)cj"(n2*- ' t ) .  (22) 

Now let us consider the original system ( n  = 1). After a given time the distribution 
(ci(r))F=l may to some extent approximate the initial condition for the system ( 2 1 )  for 
some n > 1. From (22) it follows that the polymerisation process then repeats itself 
on a larger scale and at a different rate-a slower one if a < 3, a faster one if a > 5. 

To be more precise, let us consider the moments MO(?):  from equation ( 2 )  we get 

dM2(t)/d?= M?+m ( t )  

as long as gelation does not occur. In appendix 3 we show that if the cj are not negative 
we have 

MI+, s M ; M : - '  

and since before gelation 

M1=l 

we have 

dM2/dt s M:*. 

It follows that 

M ; - 2 f f ( f ) s f / ( l  -2a)+M2(o)'-2" <a 

for a<$ and for all times. Therefore gelation cannot occur. On the other hand, for 
a >$ we have 

M2(t)2"-' 3 [M2(0)*"-' - Kt/(2a - 1)]-* 

as long as 

MI,,(t)>K M ; ( t )  

is valid, i.e. as long as the distribution is not too spread out. Of course we cannot 
expect such an inequality to hold near tg, as inspection of the formula for 6, will show: 
near r, we have, according to (13), 

M2 - M:;%". 

It follows that for $ < a  < 1 the distribution spreads out in such a manner that M2 
diverges more strongly than Mi!",, but not so strongly that it could become infinite 
while MI+, remained finite. 

6. Conclusion 

We have generalised the Flory-Stockmayer model of gelation to include, in a very 
approximate fashion, the effects of excluded volume and cyclisation effects: while still 
assuming the reaction rate to be roughly proportional to a product of some average 
number of reactive sites on each reacting molecule, we do not assume this number 
to grow linearly with the size of the polymer, but rather approximately as some power 
a < 1. We have rigorously shown that (Y 3 $ is necessary for gelation to occur. Further, 
although this model cannot be solved in closed form, we obtain the following results 
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near the gelation time tg: 

F( t )  - (tg- t)' G(x) - x n  (x<< 1 )  

v = 2 / ( 2 a  - 1 )  

M,(t) = 1 j"cj(t) - (tg - t)-'o 

8, = [2 (p  - a )  - 1 ] / ( 2 a  - 1 )  

3 
T = a + Z  

m 

j = l  

1 if p -a  >z. 
In particular we note that for + < a  < 1 :  ( a )  r is smaller than its classical (a  = 1 )  value; 
( 6 )  v and S 2  are larger than their classical values. This is in good qualitative agreement 
with Stauffer's results for percolation on a finite-dimensional lattice as compared with 
percolation on the Bethe lattice, which has the same exponents as the Flory-Stock- 
mayer model. 

Appendix 1 

We want to show that if 

which can be rewritten as 

We first show that for any M we have 

= 2 r .  

Let E > 0 be arbitrary. Then choose M so that 

l j 3 / 2 p j - q l ~ ~  

for all j z M .  Since 

pi cj-3/2 for all j 
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we have 
M-l m 

and therefore 

k 2M 

s 2 ~ ( q  + C)E 

thus proving the assertion. 

Appendix 2 

We want to prove that if 

P i ( b ) = l  

then for b sufficiently large 

f f i j (b)<m.  
j = 1  

Define y j ( b )  as 

r i (b)  = 1 

Then we have 
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for all b and j .  Define 

We have 

so if b >2/(1-2-") the convergence radius of F(z ,  b )  will be larger than one, It 
follows that 

thus proving the assertion. 

Appendix 3 

If we define 
m 

M, = jpci 
j=1  

and we assume ci 2 0, then we show that 

M2 2 M :  E M :  

f o r a l l O < a < l .  Define 

f ( x )  = x - x " / a  + l /a  - 1. 

Then we have for all x > 0 

Now define 

$((Ci),"=l) =M2--M;!",M:-'I" 

We have 

Since, however, if all the cj are zero, $((cj)pl) = 0, then clearly we have 

$((cj);l) a 0 

if all the cj are larger than zero. 
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